kdrag.theories.algebra

Functions

check_semigroup(S)

Classes

AddSemigroup(*args, **kwargs)

CommAddSemigroup(*args, **kwargs)

CommSemigroup(*args, **kwargs)

Group(*args, **kwargs)

A Group is a Monoid with an inverse element.

Monoid(*args, **kwargs)

A Monoid is a Semigroup with an identity element.

SemiGroup(*args, **kwargs)

A Semigroup is a set with an associative binary operation.

class kdrag.theories.algebra.AddSemigroup(*args, **kwargs)

Bases: Protocol

add: FuncDeclRef
add_assoc: Proof
class kdrag.theories.algebra.CommAddSemigroup(*args, **kwargs)

Bases: AddSemigroup, Protocol

add: FuncDeclRef
add_assoc: Proof
add_comm: Proof
class kdrag.theories.algebra.CommSemigroup(*args, **kwargs)

Bases: SemiGroup, Protocol

mul: FuncDeclRef
mul_assoc: Proof
mul_comm: Proof
class kdrag.theories.algebra.Group(*args, **kwargs)

Bases: Monoid, Protocol

A Group is a Monoid with an inverse element. mul_left_inv : forall x, inv x * x = one mul_right_inv : forall x, x * inv x = one

inv: FuncDeclRef
mul: FuncDeclRef
mul_assoc: Proof
mul_left_inv: Proof
mul_one: Proof
mul_right_inv: Proof
one: ExprRef
one_mul: Proof
class kdrag.theories.algebra.Monoid(*args, **kwargs)

Bases: SemiGroup, Protocol

A Monoid is a Semigroup with an identity element. one_mul : forall x, one * x = x mul_one : forall x, x * one = x

mul: FuncDeclRef
mul_assoc: Proof
mul_one: Proof
one: ExprRef
one_mul: Proof
class kdrag.theories.algebra.SemiGroup(*args, **kwargs)

Bases: Protocol

A Semigroup is a set with an associative binary operation. mul_assoc : forall x y z, mul (mul x y)

mul: FuncDeclRef
mul_assoc: Proof
kdrag.theories.algebra.check_semigroup(S: SemiGroup)
Parameters:

S (SemiGroup)

Modules

category

group

kleene

lattice

ordering

sqmatrix

topology

vector