kdrag.theories.algebra
Functions
Classes
|
|
|
|
|
|
|
A Group is a Monoid with an inverse element. |
|
A Monoid is a Semigroup with an identity element. |
|
A Semigroup is a set with an associative binary operation. |
- class kdrag.theories.algebra.CommAddSemigroup(*args, **kwargs)
Bases:
AddSemigroup
,Protocol
- add: FuncDeclRef
- class kdrag.theories.algebra.CommSemigroup(*args, **kwargs)
Bases:
SemiGroup
,Protocol
- mul: FuncDeclRef
- class kdrag.theories.algebra.Group(*args, **kwargs)
Bases:
Monoid
,Protocol
A Group is a Monoid with an inverse element. mul_left_inv : forall x, inv x * x = one mul_right_inv : forall x, x * inv x = one
- inv: FuncDeclRef
- mul: FuncDeclRef
- one: ExprRef
- class kdrag.theories.algebra.Monoid(*args, **kwargs)
Bases:
SemiGroup
,Protocol
A Monoid is a Semigroup with an identity element. one_mul : forall x, one * x = x mul_one : forall x, x * one = x
- mul: FuncDeclRef
- one: ExprRef
- class kdrag.theories.algebra.SemiGroup(*args, **kwargs)
Bases:
Protocol
A Semigroup is a set with an associative binary operation. mul_assoc : forall x y z, mul (mul x y)
- mul: FuncDeclRef
Modules