kdrag.theories.float
Theory of built in floating point and connection to the reals
Module Attributes
| round_idem_finite = kd.prove( | |
Functions
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | 
- kdrag.theories.float.IsFinite(x: FPRef) BoolRef
- Parameters:
- x (FPRef) 
- Return type:
- BoolRef 
 
- kdrag.theories.float.NoOverflow(m, x: ArithRef, s)
- Parameters:
- x (ArithRef) 
 
- kdrag.theories.float.in_range(x)
- kdrag.theories.float.is_finite(x: FPRef)
- Parameters:
- x (FPRef) 
 
- kdrag.theories.float.min_float64 = |= ForAll(z, Implies(Or(fpIsNormal(z), fpIsSubnormal(z), fpIsZero(z)), z >= fpToFP(RNE(), -179769313486231570000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000)))
- >>> assert True - Parameters:
- args (smt.ExprRef | Proof) 
 
- kdrag.theories.float.no_overflow(m, x)