kdrag.theories.algebra
Functions
Classes
| 
 | |
| 
 | |
| 
 | |
| 
 | A Group is a Monoid with an inverse element. | 
| 
 | A Monoid is a Semigroup with an identity element. | 
| 
 | A Semigroup is a set with an associative binary operation. | 
- class kdrag.theories.algebra.CommAddSemigroup(*args, **kwargs)
- Bases: - AddSemigroup,- Protocol- add: FuncDeclRef
 
- class kdrag.theories.algebra.CommSemigroup(*args, **kwargs)
- Bases: - SemiGroup,- Protocol- mul: FuncDeclRef
 
- class kdrag.theories.algebra.Group(*args, **kwargs)
- Bases: - Monoid,- Protocol- A Group is a Monoid with an inverse element. mul_left_inv : forall x, inv x * x = one mul_right_inv : forall x, x * inv x = one - inv: FuncDeclRef
 - mul: FuncDeclRef
 - one: ExprRef
 
- class kdrag.theories.algebra.Monoid(*args, **kwargs)
- Bases: - SemiGroup,- Protocol- A Monoid is a Semigroup with an identity element. one_mul : forall x, one * x = x mul_one : forall x, x * one = x - mul: FuncDeclRef
 - one: ExprRef
 
- class kdrag.theories.algebra.SemiGroup(*args, **kwargs)
- Bases: - Protocol- A Semigroup is a set with an associative binary operation. mul_assoc : forall x y z, mul (mul x y) - mul: FuncDeclRef
 
Modules