Fused multiply add

multiply accumlate

Remez algorithm Find minimax optimal polynomial over range

How to calculate things

  1. taylor series. We often have these in closed form. We can bound errors using remainder theorem (The error of a taylor series is bounded by the maximum value the next term can take over the interval). If nothing else, taylor series can boot strap other methods by using them to define arbitrary precision approximations. 2.

Dyadic rationals = \(m \times 2^d\). These are an idealized model of floating point. They can add, subtract, and multiply exactly.

ULP - Unit in Last place. a measure of how accurate an fp calculation is. 0.5 ulp is the best you can do for approximating an antagonisitcally chosen number.

How and how not to compute matrix exponentials https://www.maths.manchester.ac.uk/~higham/talks/exp10.pdf 19 dubious ways

interesting discussion of deriving a specific approximator

Range reduction

Powers of 2 are often easier to handle seperately, leaving behind a problem

exp = 2^(log_2(e) * x)

sin/cos don’t matter modulo 2 pi. modulo pi for some signs.

2Sum and Fast2Sum

https://en.wikipedia.org/wiki/2Sum Compensated summation Exact roundoff in floating point addition. From an information perspective, taking two 64 bit numbers into 1 is lossy? Well, yeah but so what? What if you kept an entire error tape? You can’t get exact roundoff

You can get exact errors. If you try to keep doing this, the error terms keep growing in size though. (a + (b + c)) gets two seperate error terms. Exact addition of these gives you exact error.

Fused multiply add let’s you obviously get the exact error of a multiplication

x = o(a * b)
err = o(a*b - x)

kahan summation pairwise summation simple divide and conquer summation.

Veltkamp splitting

You can split a float into 2 floats that add together to it precisely. This is useful sometimes

Dekker Multiplication

Exact error can be represented in floating point for floating point multiplication

Newton Raphson

Multiplication by arbitrary precision number like pi

Compute a hgh and low part of the number Ch = RN(C) Cl = RN(C - x)

Error Models


o(x op y) = (x op y)(1 + e) e <= u

Sterbenz lemma

Addition and subtraction are exact if the numbers are really close to each other. (A factor of 2)


https://gappa.gitlabpages.inria.fr/gappa/index.html Proofs about

multiple proof output modes -B latex -Bcoq

Implementing Cosine in C from Scratch (2020) ( musl __cos Boldo Formal Verification of Scientific Computing Programs icfp 19

Ranged Floats {range : interval; x : float code}

Numerical Analysis Higham

comparing floating point is tricky precisa program round off error certifier via static analysi. Accepts subset of PVS. Hmm outputs framaC with annotations. Web demo is interesting. fprock

One Polynomial Approximation to Produce Correctly Rounded Results of an Elementary Function for Multiple Representations and Rounding Modes shaman operator overloading to estimate numerical error

Daisy accruate algorithms

rlibm better polynomial approximations using linear programming

Handbook of floating point

Intervals arithmetic interval mooc

Linkes to dd arithmetic. dd+d and qd+d. airthemtic. Ball arithemtic using float formats for everything? double double arithemtic. using two doubles to represent and one double for ballradius. Sometimes you need to go to higher precision to correctly round. So 2 doubles is attarcive sine 128bit floas rarely exist in hardware

compute recude bound result * 2^-53 or “error-free transformation”


Formally Verified Approximations of Definite Integrals

Henessey and Patterson Appendix H has a good section with reference by the same Golberg who wrote the What Every Computer Scientist Should Know About Floating-Point Arithmetic

  • NaN
  • Denormalized numbers

Fixed point smtlib encoding pysmt

john harrison p-adic and floats are similar? msb vs lsb?

harrison book - Proving About Real Numbers Boldo Melquiond book - computer arithemtic and formal proofs

Can I directly write down the principals of interval arithmetic? The contraction map principle. True ODES are the capability to do something for all dt

https://news.ycombinator.com/item?id=29201473 The dangers of fast-math flags. Herbie comments ocaml crlibm https://github.com/Chris00/ocaml-crlibm

Herbie is super cool.

  1. you can just do rancom sampling to estimate errors, with extreme multiprecision accuracy and regular. Dynamic analysis in a sense?
  2. rewriitng Denali

Arith_2021 - a conference on FP? FPTalks

Hamming book

What is fluctuat? precisa precision tuning Real2float rosa

https://monadius.github.io/FPTaylorJS/#/ FPTaylor demo https://github.com/arnabd88/Satire - scaling numerical rounding analysis FPBench , FPTalk Herbie https://github.com/soarlab https://gitlab.com/numerical_shaman/shaman shaman - another error tracking thing

Gappa Sollya textbook on coq floating point FlocQ

Verified plotting -Melquiond

https://twitter.com/santoshgnag/status/1396807877260726280?s=20 generating correctly rounded math libraries for 32 bit

http://www.lix.polytechnique.fr/~putot/fluctuat.html Fluctuat analyzer


Textbook Formal Verification fo Floatng Point Hardware

My coq pendulum swing up. Could I verify it?

https://www.cs.cmu.edu/~quake/robust.html Adaptive Precision Floating-Point Arithmetic and Fast Robust Predicates for Computational Geometry https://github.com/mourner/robust-predicates https://github.com/mikolalysenko/robust-arithmetic-notes

http://doc.cgal.org/latest/Number_types/classCGAL_1_1Gmpq.html http://www.algorithmic-solutions.info/leda_guide/geometryalgorithms.html

https://twitter.com/santoshgnag/status/1381959477759463429?s=20 https://arxiv.org/pdf/2104.04043.pdf - synethesizing a correctly rounded floating point guy

CRLibm MetaLbim gappa http://toccata.lri.fr/fp.en.html tocatta http://toccata.lri.fr/gallery/newton_sqrt.en.html I guess why3 has extensive support for floating point?

https://gitlab.inria.fr/why3/whymp a multirpecision library verified using why3


https://www.youtube.com/watch?v=RxOkV3wmEik&ab_channel=ACMSIGPLANACMSIGPLAN Generating Correctly Rounded Math Libraries for New Floating Point Variants (full) https://www.youtube.com/watch?v=B_J7DSX_ZXM&ab_channel=ACMSIGPLAN λS: Computable Semantics for Diff’ble Programming with HO Functions and Datatypes (full)