Variational Method of the Quantum Simple Harmonic Oscillator using PyTorch

A fun method (and useful!) for solving the ground state of the Schrodinger equation is to minimize the energy integral dx \psi^\dagger H \psi while keeping the total probability 1. Pytorch is a big ole optimization library, so let’s give it a go.

I’ve tried two versions, using a stock neural network with relus and making it a bit easier by giving a gaussian with variable width and shift.

We can mimic the probability constraint by dividing by to total normalization \int dx \psi^\dagger \psi. A Lagrange multiplier or penalty method may allows us to access higher wavefunctions.

SGD seems to do a better job getting a rounder gaussian, while Adam is less finicky but makes a harsh triangular wavefunction.

The ground state solution of -\frac{d^2\psi}{dx^2} + x^2\psi=E\psi is e^{-x^2/2}, with an energy of 1/2 (unless I botched up my head math). We may not get it, because we’re not sampling a very good total domain. Whatever, for further investigation.

Very intriguing is that pytorch has a determinant in it, I believe. That opens up the possibility of doing a Hartree-Fock style variational solution.

Here is my garbage

Edit: Hmm I didn’t compensate for the fact I was using randn sampling. That was a goof. I started using unifrom sampling, which doesn’t need compensation

 

sho

Attaching the Jordan Wigner String in Numpy

Just a fast (fast to write, not fast to run) little jordan wigner string code

What fun!