Rough Ideas on Categorical Combinators for Model Checking Petri Nets using Cvxpy

Petri nets are a framework for modeling dynamical systems that is very intuitive to some people. The vanilla version is that there are discrete tokens at nodes on a graph representing resources of some kind and tokens can be combined according to the firing of transition rules into new tokens in some other location.

This is a natural generalization of chemical reaction kinetics, where tokens are particular kinds of atoms that need to come together. It also is a useful notion for computer systems, where tokens represent some computational resource.

To me, this becomes rather similar to a flow problem or circuit problem. Tokens feel a bit like charge transitions are a bit like current (although not necessarily conservative). In a circuit, one can have such a small current that the particulate nature of electric current in terms of electrons is important. This happens for shot noise or for coulomb blockade for example.

If the number of tokens is very large, it seems intuitively sensible to me that one can well approximate the behavior by relaxing to a continuum. Circuits have discrete electrons and yet are very well approximated by ohm’s laws and the like. Populations are made of individuals, and yet in the thousands their dynamics are well described by differential equations.

It seems to me that mixed integer programming is a natural fit for this problem. Mixed integer programming has had its implementations and theory heavily refined for over 70 years so now very general purpose and performant off the shelf solvers are available. The way mixed integer programs are solved is by considering their quickly solved continuous relaxation (allowing fractional tokens and fractional transitions more akin to continuous electrical circuit flow) and using this information to systematically inform a discrete search process. This seems to me a reasonable starting approximation. Another name for petri nets is Vector Addition Systems, which has more of the matrix-y flavor.

We can encode a bounded model checking for reachability of a petri net into a mixed integer program fairly easily. We use 2-index variables, the first of which will be used for time step. We again turn to the general purpose functional way of encoding pointful dsls into pointfree ones as I have done here and here. The key point is that you need to be careful where you generate fresh variables. This is basically copy catting my posts here.

I’m like 70% sure what I did here makes sense, but I’m pretty sure the general idea makes sense with some fiddling.

The big piece is the weighted_block function. It let’s you build a combinator with an internal state and input and output flow variables. You give matrices with entries for every possible transition. Whether transitions occurred between t and t+1 is indicated by integer variables. There is also possible accumulation of tokens at nodes, which also requires integer variables. Perhaps we’d want to expose the token state of the nodes to the outside too?

Weighted block schematically looks something like this

We can also get out a graphical representation of the net by reinterpreting our program into GraphCat. This is part of the power of the categorical interface.

When I talked to Zach about this, he seemed skeptical that MIP solvers wouldn’t eat die a horrible death if you threw a moderately large petri net into them. Hard to say without trying.


There is an interesting analogy to be found with quantum field theory in that if you lift up to considering distributions of tokens, it looks like an occupation number representation. See Baez.

If you relax the integer constraint and the positivity constraints, this really is a finite difference formulation for capacitor circuits. The internal states would then be the charge of the capacitor. Would the positivity constraint be useful for diodes?

I wonder how relevant the chunky nature of petri nets might be for considering superconducting circuits, which have quantization of quantities from quantum mechanical effects.

Cvxpy let’s you describe convex regions. We can use this to implement a the convex subcategory of Rel which you can ask reachability questions. Relational division won’t work probably. I wonder if there is something fun there with respect the the integerizing operation and galois connections.

Edit: I should have googled a bit first. mathemtical programming tecchniques for petri net reachability. So it has been tried, and it sounds like the results weren’t insanely bad.

Categorical Combinators for Graphviz in Python

Graphviz is a graph visualization tool In Conal Elliott’s Compiling to categories, compiling code to its corresponding graphviz representation was one very compelling example. These graphs are very similar to the corresponding string diagram of the monoidal category expression, but they also look like boolean circuit diagrams. Besides in Conal Elliott’s Haskell implementation, there is an implementation in the Julia Catlab.jl project

I’ve basically implemented a toy version of a similar thing in python. It lets you do things like this

Why python?

  • Python is the lingua franca of computing these days. Many people encounter it, even people whose main thing isn’t computers.
  • The python ecosystem is nutso good.
  • Julia is kind of an uphill battle for me. I’m fighting the battle ( ) , but I already know python pretty well. I can rip this out and move on.

What I did was implement some wrappers around the graphviz python package. It exposes a not very feature rich stateful interface. It is pretty nice that it prints the graphs inline in jupyter notebooks though.

The code is written in a style very similar (and hopefully overloadable with) to that of z3py relation algebra. . There is a fairly general cookbook method here for categorifying dsl. Since graphviz does not directly expose fresh node creation as far as I can tell, I made my own using a random number generator. The actual combinators are graphviz object processors, so we build up a giant functional chain of processors and then actually execute it with run. The inputs and outputs are represented by lists of node names. The is some design space to consider here.

I also had to use class based wrappers Based on the precedent set by the python 3 matrix multiplication operator @, I think it is a requirement that this also be used for category composition. id is a keyword or something in python unfortunately. For monoidal product, I feel like overloading power ** looks nice even if it is a nonsensical analogy, * is also not too bad. I went with * for now.

The graphviz graphs aren’t quite string diagrams. They make no promise to preserve the ordering of your operations, but they seem to tend to.

Here’s some example usage

Class based overloading is the main paradigm of overloading in python. You overload a program into different categories, by making a program take in the appropriate category class as a parameter.

For example something like this ought to work. Then you can get the graph of some matrix computation to go along with it’s numpy implementation

Maybe outputting tikz is promising?

Stupid is as Stupid Does: Floating Point in Z3Py

Floating points are nice and all. You can get pretty far pretending they are actually numbers. But they don’t obey some mathematical properties that feel pretty obvious. A classic to glance through is “What Every Computer Scientist Should Know About Floating-Point Arithmetic”

We can check some properties with z3py. Here are a couple simple properties that succeed for mathematical integers and reals, but fail for floating point

I recently saw on twitter a reference to a Sylvie Boldo paper “Stupid is as Stupid Does: Taking the Square Root of the Square of a Floating-Point Number”.

In it, she uses FlocQ and Coq to prove a somewhat surprising result that the naive formula \sqrt{x^2} = |x| actually is correct for the right rounding mode of floating point, something I wouldn’t have guessed.

Z3 confirms for Float16. I can’t get Float32 to come back after even a day on a fairly beefy computer. If I use FPSort(ebits,sbits) rather than a standard size, it just comes back unknown, so i can’t really see where the cutoff size is. This does not bode well for checking properties of floating point in z3 in general. I think a brute force for loop check of 32 bit float properties is feasible. I might even be pretty fast. To some degree, if z3 is taking forever to find a counterexample, I wonder to what to degree the property is probably true.

If anyone has suggestions, I’m all ears.

A Sketch of Gimped Interval Propagation with Lenses

David Sanders (who lives in Julia land ) explained a bit of how interval constraint propagation library worked to me last night. He described it as being very similar to backpropagation, which sets off alarm bells for me.

Backpropagation can be implemented in a point-free functional style using the lens pattern. Lenses are generally speaking a natural way to express in a functional style forward-backward pass algorithm that shares information between the two passes .

I also note Conal Elliot explicitly mentions interval computation in his compiling to categories work and he does have something working there.

Interval arithmetic itself has already been implemented in Haskell in Ed Kmett’s interval package. so we can just use that.

The interesting thing the backward pass gives you is that everything feels a bit more relational rather than functional. The backward pass allows you to infer new information using constraints given down the line. For example, fuse :: Lens (a,a) a let’s you enforce that two variables we actually equal. The lens pattern lets you store the forward pass intervals in a closure, so that you can intersect it with the backwards pass intervals.

I make no guarantees what I have here is right. It’s a very rough first pass. It compiles, so that is cool I guess.

Here’s my repo in case I fix more things up and you wanna check it out

Now having said that, to my knowledge Propagators are a more appropriate technique for this domain. I don’t really know propagators though. It’s on my to do list.

Lens has a couple problems. It is probably doing way more work than it should, and we aren’t iterating to a fixed point.

Maybe an iterated lens would get us closer?

This is one way to go about the iterative process of updating a neural network in a functional way by evaluating it over and over and backpropagating. The updated weights will be stored in those closures. It seems kind of nice. It is clearly some relative of Iteratees and streaming libraries like pipes and conduit (which are also a compositional bidirectional programming pattern), the main difference being that it enforces a particular ordering of passes (for better or worse). Also I haven’t put in any monadic effects, which is to some degree the point of those libraries, but also extremely conceptually clouding to what is going on.

Another interesting possiblity is the type

type Lens s t a b = s -> (a, b -> t)

Lens s (Interval s) a (Interval a)

This has pieces that might be helpful for talking about continuous functions in a constructive way. It has the forward definition of the function, and then the inverse image of intervals. The inverse image function depends on the original evaluation point? Does this actually make sense? The definition of continuity is that this inverse image function must make arbitrarily small image intervals as you give it smaller and smaller range intervals. Continuity is compositional and plays nice with many arithmetic and structural combinators. So maybe something like this might be a nice abstraction for proof carrying continuous functions in Coq or Agda? Pure conjecture.